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ABSTRACT

The idea of using a passive end point motion constraint

to calibrate robot manipulators is of particular interest

because no measurement equipment is required. The accuracy

attained using this method is compared to the accuracy

attained by an unconstrained calibration using computer

simulated measurements. A kinematic model is established for

each configuration using the Denavit-Hartenberg methodology.

The kinematic equations are formulated and are used in the

computer simulated calibration to determine the actual

kinematic parameters of the manipulator. The results are

discussed in terms of the effect of measurement noise and the

number of experimental observations on the accuracy of

parameter identification.
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I. INTRODUCTION

The goal of using robot manipulators as the key link in

flexible automated manufacturing systems has presented

engineers with a variety of significant problems. For a six

degree of freedom robot, the position and orientation of the

manipulator end point must be specified for each pose.

Accuracy and repeatability are the yardsticks of a robot's

performance. Accuracy is the measure of the robot's ability to

move to a commanded position in its workspace. Repeatability

is the measure of the robot manipulator's ability to return to

a previously learned position. Presently, robots that are used

in industrial applications display adequate repeatability, but

do not exhibit satisfactory levels of accuracy. For most

industrial robots, repeatabilities of the order of 1 mm or

better can be attained while the positioning accuracy may be

off by as much as 1 cm [Ref. 1:p. 14] . For on-line programming

applications such as the traditional automated pick and place

operations where the robot manipulator must be taught the

desired motion, adequate repeatability alone is sufficient.

However, as the concept of off-line programming was developed

as a means of automatically generating robot control programs

for tedious applications that previously would have involved

large numbers of taught tasks, the low levels of acciracy that



robot manipulators could attain became a major roadblock to

their widespread usage.

There are several factors that adversely influence the

accuracy of robot manipulators. Among them are: temperature

variations, gear backlash and harmonics, compliance in links

and joints, steady state errors in the joint servo

controllers, and inaccurate knowledge of the manipulator's

kinematic parameters. Experience has shown that the most

prevalent source of error is inaccurate knowledge of the

kinematic parameters that the robot controller has of the

manipulator arm. This work deals primarily with the

identification of the variations in the kinematic parameters

of the model that the robot controller has.

Even small variations in these kinematic parameters can

cause significant error in the manipulator end point

placement. The calibration process identifies the actual

kinematic parameters of the model and uses them to update the

robot controller's model so that the manipulator end point may

be placed into a commanded position with greater accuracy. in

calibration tests performed by Mooring, Roth, and Driels [Ref.

2:p. 6] and several others, it has been shown that correction

of the kinematic errors resuited in improvement in accuracy to

the same order of magnitude as the repeatability.

The process of robot manipulator calibration is

characterized by four major steps: modelling, measurement,

identification, and correction. The first step in the

2



calibration process is to form a valid kinematic model of the

manipulator. The model is the fundamental relationship between

the manipulator's kinematic parameters and the resulting end

effector pose. The manipulator model may take two basic forms.

The forward kinematic model is used to compute the end

effector pose given the joint variable data. The inverse

kinematic model is used to determine the joint displacements

for a given pose. The kinematic model is constructed using the

Denavit-Hartenberg method with modifications. The resulting

model is used to define an error quantity based on the nominal

kinematic parameter set and the unknown actual kinematic

parameter that need to be identified.

Measurement involved physically moving the manipulator end

effector to various locations in its workspace and recording

the corresponding joint displacements. There are a number of

methods that have been used to obtain the data necessary for

manipulator calibration. Theodolites [Ref. 3], laser

inferometers [Ref. 4], coordinate measuring machines [Ref. 5,

and many other techniques can be used depending on the

constraints imposed by the desired level of accuracy, size,

ease of use, and cost. Alternatively, joint variable data and

pose .... maicn can be obtained through computer simulation

with the use of a random number generator routine. This was

the aprach empicyed in this research.
h de i -Lhe

...... .. ication phase, the task is to identify the

se- de.ara e-.ers, that allow the poses computed from the



model to most closely match the measured data. This is

accomplished through the use of a gradient based Levenberg-

Marquardt algorithm that used the collected pose information

to ideintify the actuai parameters by systematically changing

the nominal parameters to reduce the previously defined error

quantity. There are several factors that influence the

identification process. These factors are the type of

identification routine used, the initial values of the

parameters to be determined, the number of poses taken, the

influence of rrasurement accuracy and noise, encoder noise,

the choice of measurement configuration, and the attainable

range of joint displacements used during the observations.

These effects are discussed in detail at a later time.

Finally, in the correction step, these identified

kinematic parameters are used to update the robot controller's

model. This process, however, is not without its own unique

set of problems. Normally, an inverse kinematic solution using

the actual kinematic parameters is employed to convert the

desired off-line locations in the task space o modified

locations in the manipulator's own Joint space. The robot has

an inverse kinematic solution for the nominal model, but may

have to develop its own solution using the actual model. These

issues are beyond the scope of this -esearch and were not

addressed.

The purpose of this research was to compare the accuracy

attained for two different computer simulated calibration

4



methods. The first method involves using an uncon.strained

manipulator end point and the second method employs a passive

end point motion constraint callea a ballbar. These computer

simulated calibrations were performed on the Model G Compact

Master-Slave Manipulator shown in Figure 1. The Model G

Master-Slave Manipulator is a six degree of freedom

manipulator arm with five revolute joints and one prismatic

joint (5RIP) . This manipulator is designed to reproduce the

natural movements and force of the human hand. The manipulator

end point will move in exoctly the samp manner as the operator

moves the manipulator handle. The motion is constrained only

by the dimensional limits of the manipulator itself. The

forces produced at the end point will be the same as those

forces applied at the handle with the exception of minor

losses due to unbalance and friction. This manipulator was

chosan for these calibrations because of its usefulness for

experiments that are concerned with probing of objects that

can not be viewed during the probing operation to acquire

contact informatici..

The format of the remainder of this thesis will be to

first conduct an in-depth examination of theory applicable to

robot calibration. This will be followed by an analysis of the

two calibratior methods used and the unique problems with each

method. Net, wi'l be a discussion of the results obtained

and, finaly, one corclusions drawn from this research will be

stated.
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II. THEORY

A. THE DENAVIT-HARTENBERG METHOD WITH MODIFICATIONS

As was discussed in the Introduction, the starting point

for any calibration process is the establishment of a

representative model of the manipulator. There are currently

a number of methods of generating the forward kinematic model

of a serial link manipulator. The technique that was used to

define the spatial orientation between objects and various

locations in the manipulator working volume is the Denavit-

Hartenberg method [Ref. 6] with modifications proposed by

Hayati [Ref. 7], Mooring [Ref. 8], and Wu [Ref. 9] to handle

situations in which consecutive joint axes are nominally

paiallel. The basic concept is to place a coordinate frame on

each of the manipulator links using a set of rules that

defines the origin of the frame and its orientation. The

position of consecutive links is specified by a homogeneous

transformation matrix, which transforms the frame fixed on

link n-i into the frame fixed on link n. This transformation

is composed of more fundamental transformations representing

three basic translations along the x, y, and z axes and three

rotations about those same axes. These 4 x 4 matrix

transformations are expressed as follows:

7



10 Ox

Trans (x, y,z) = (1)
S0 1 z
Lo000j

0 0 0
10 o 0 -i~ 0

ROT (x, Ox ) = 0 Cs X -sinox 0 (2)

0 0 0 1

cosoy 0 sinOy 0

OTYO) 0 1 0 0 (3)
ROT -sin~y0 cos(y0

0 0 0 1

cosoz -sin z 0 0

ROT ( z, 0z) =sinOz cOSOz 0 0 (4)
0 0 10

0 0 0 1

where trans (x, y, z) describes a translation given by the

vector r = [x, y, z] and ROT (x, 0.) describes a rotation of

0, about the x-axis of the coordinate frame.

With the aid of Figure 2, the Denavit-Hartenberg

transformation methodology can be illustrated. First, the axis

of joint motion must be identified and the z-axis must be

aligned with the axis of joint motion. Next, the common normal

between consecutive joint axes must be identified.

Then, the origin of coordinate frame n is located at the

intersection of joint axis n41 and the common normal between

8
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Figure 2. Placement of Coordinate Frames.
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axes n+l and n. the z axis of coordinate frame n is always

aligned with joint axis n+l and the x axis is always aligned

along the common normal between consecutive joint axes.

Transforming frame n-i to frame n is accomplished by the

following sequential steps:

" Rotate frame n-i about axis z.,_: by an angle 0, the joint

angle.

" Translate along axis z:. a distance d., the offset.

" Translate along the rotated x._- axis, a distance a-, the
link length.

" Rotate about axis x- by an angle x,, the twist angle.

• Rotate about axis y, by an angle P.

Incorporating these rules with the transformation matrix

format specified in Equations 1, 2 and 3, the transformation

from frame n-I to frame n is expressed in the following form:

An ROT(z,e,) Trans(z,d,) Trans (x, a,)ROT(x, a,)ROT(Y,') (5)

Performing the matrix multiplications gives the resulting

form:

cecp,-sesasp -se, ca, cesP + sosa=cP ace 2
An )I CPI+C= SB C IS PSn Ce" Ca" se~sp.-ce,,sa~cp, a~se2  (6

An = ! (6)
-cansp cac o" dI

0 0 0 ii

in most cases, four out of the five transformations are

necessary to transform frame n-i into frame n. For revolute

joints, the parameters dn, a- and (x are constants dictated by

the geometry of the manipulator and 0. is the a:.rlar



variable. The parameter P is defined only in cases where

consecutive coordinate axes are parallel and, in these

instances, d-, is normally set to zero. When consecutive axes

are parallel, there is no unique common normal. The IA
parameter allows for small amount of inclination between the

axes. For prismatic joints, the location of the origin of the

coordinate system is determined by extending the axis so that

it intersects the axis of the next joint. This makes the

length of the common normal, a,, and the next joint offset,

d-.-, both equal to zero. Therefore, for prismatic joints, d-

is the joint variable and the link geometry is described by 0.

and x.

In order for a robot manipulator to have complete

dexterity in its working volume, it must have six degrees of

freedom. For a six joint six link manipulator, the

transformation from frame 5 to frame 6 takes the form

A,= ROT(z, 4)ROT(y, O,)ROT(x, *) Trans (p,,p,p 6 ) (7)

where the rotations are sequentially defined as roll, pitch

and yaw [Ref. I0] . The transformation from the base coordinate

frame to the manipulator end link is:

T 6 = AiA2,44AA & 6  (8)

Any suitable calibration model must be, in Everett's terms

[Ref ii], complete. Completeness refers to the model's ability

to relate joint displacements to the tool pose for a

manipulator while a'Iowinu for the arbitrary placement of the

i!



world coordinate frame and arbitrary assignment of the

manipulator's zero position. In other words, the model must

have the propei number of identifiable parameters to account

for variations in those parameters. The required number of

independent kinematic parameters is the same as the number of

constraint equations necessary to specify the tool pose and

joint frames. Mooring, Roth and Driels [Ref. 2:p. 431 have

concluded that for each revolute joint, four independent

kinematic parameters are needed and for each prismatic joint,

two independent kinematic parameters are required. The

required number of independent kinematic parameters N, can be

determined from the following equation.

N = 4R + 2P + 6 (9)

R is the number of revolute joints and P is the number of

prismatic joints. An additional six parameters are specified

in order to obtain an independent tool frame location.

B. PARAMETER IDENTIFICATIONS

Tne flowchart in Figure 3 outlines the calibration process

up through the identification step. First, the range of motion

for each joint and the number of observations to be made must

be determined. Next, sets of joint variables for each

observations are obtained with the use of a random number

generator program. The forward kinematic model of the 5RiP

manipulator is then applied to generate pose data for each of

:2



Joint Motion Range
Number of Observations

Generate Joint Variable Data

Nominal Parameters Compute Actual
+ AP End Effector Position

Encoder Noise --- Measure Noise

Nominal Parameters Non-Linear Least Squares
Parameter Identification

Identified Kinematic Parameters

Figure 3. Flowchart of Calibration Process.
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the observations using the joint variable data and manipulator

link parameters. The kinematic parameters used in this forward

kinematic solution are the nominal kinematic parameters plus

a known error parameter, AP. The error parameter can take the

form of a length error or an angular error as is appropriate

for each of the parameters that is to be identified. The

result of this application is a simulated known manipulator

pose for each of the joint variable sets. The random noise of

measurement and encoder noise were superimposed on the pose

data and joint variables respectively.

The simulated observation data and the nominal kinematic

parameters are the inputs to an identification program ID6.

ID6 initializes the nominal kinematic parameters and feeds

them to an identification subroutine ZXSSQ which numerically

estimates the gradient and uses it to produce improved

predictions of the kinematic model parameters. ZXSSQ employs

a subroutine that takes the current parameter estimates and

calculates an error between the model predictions and the

simulated observation data. ZXSSQ uses the error to determine

the qradient. The cycle continues until convergence criteria

is met. The parameter estimation is treated as an

unconstrained non-linear optimization problem. Fiaure 4 shows

a flowchart of the process.

ZXSSQ is a finite difference, Levenberg-MarQuardt routine

that is tailored for non-linear least squares problems [Ref.

2 :pp. 135-139] . The best way to illustrate its use is throuoh

14



Nominal Parameters Nominal Parameters
++

Known AP Unknown AP

Joint
Variable Data

Forward Forward
Kinematic Model Kinematic Model

Measured Pose Matrix Estimated Pose Matrix
Tm T

AT - T-TM
Pose Error

vJ

ZxSSQ
Changes Unknown A P
To Minimize Pose Error

Figure 4. Flowchart of Identification Process.
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an example. Consider the simple two link manipulator in Figure

5. What values of 0 and 0, will put the manipulator end point

at point Q? If P=F(0 , 0,), V and Q are known link lengths,

and Q is a known position in the two dimensional workspace,

the problem is to find 0 and 02 such that the quantity z:(P-Q)

approaches zero. In two-dimensional matrix notion, the

equations are as follows:

V: 1[ l[aCos 0:+a fCos (0- 07 )"~x (10)
=P, K L)-Q a sin0 + Isin (0+0-) 0j

Where x, and y, are the difference between the estimated and

known parameters in the x and y directions respectively. The

Levenberg-Marquardt algorithm uses this error quantity to

numerically estimate the gradient and produces updated 0, and

01 values. The process continues until predetermined

convergence criteria are met and 0 and 0 will be the values

needed to put the manipulator end point at point Q. A more

detailed explanation of the ZXSSQ algorithm is given in

Appendix A.

According to Equation 9 for the 5R1P manipulator used in

this study, it would be expected that 28 kinematic parameters

would have to be identified. It will later be seen that this

number will have to be altered Lo meet the particular needs of

the measurement method employed and to achieve satisfactory

parameter identification.

16
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III. CALIBRATION METHODS

A. UNCONSTRAINED METHOD

This method involves establishing a valid forward

kinematic model using the Denavit-Hartenberg methodology and

using this model to generate the manipulator poses that will

be input to the identification program. Employing the Denavit-

Hartenberg criter> previously discussed to the Model G

Master-Slave Manipulator produces the model shown in Figure 6.

The location of the world coordinate is arbitrary and it was

fixed in the position shown only because it was a convenient

reference frame for measurements. The location of the base

frame of the manipulator is also arbitrary as long as Z, is

aligned with tl'e first join . The remainder of the

coordinate frames were allocated in accordance with the

Denavit-Hartenberg Meth_. T e t- -nsformation from frame 2 to

frame 3 required the use of the parameter P_, because

coordinate frames 2 and 3 are nominally parallel [Ref. 12].

The definition of frame 6 is arbitrary and, in general, the

transformation from frame 5 to frame 6 requires three

translations and three rotations. However, since frame 6 was

chosen to be offset from the origin of coordinate frame 5, its

orientation is undefined. Therefore, only three parameters are

required to transform frrom frame 5 to frame 6 and at least one

18
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of these parameters must be a displacement otherwise no

movement of the origin of frame 5 would occur.

The parameters 0b, px6 and pz, were chosen to define the

transformation from frame 5 to frame 6 because the identified

deviation from the nominal value of 0, is composed of the

encoder o'Cset 60 and the constant offset 80, as well as the

joint variable 06. The definition of 0. is as follows:

The transformation from frame 5 to frame 6 can be expressed in

a reduced form

A 6 = ROT ( z, 0 ) TRANS (p,, 0, P') (12)

As was discussed previously, in order for a calibration

model to be valid, it must satisfy the completeness criteria

specified in Equation 9. The required number of identifiable,

independent kinematic parameters must equal the number of

constraint equations needed to define the tool pose [Ref. 2.p.

421 . Using the completeness criteria, it is expected that

there must be 28 identifiable kinematic parameters in order to

have a valid model of a 5RlP manipulator. However, because

only three parameters instead of six were used to specify the

transformation from frame 5 to frame 6, the required number of

independent kinematic parameters is 25 for this calibration

process.

There were some unique problems encountered applying the

Denavit-Hartenberg methodology to the Model G Master-Slave

20



Manipulator. The prismatic joint, in particular, requires some

modifications to the Denavit-Hartenberg model. Because the

location of frame 3 is defined by the common normal between

axes 4 and 5 and the prismatic joint axis (frame 3) is not

fixed in space, the prismatic joint axis is free to move and

it moves through the origin of frame 3 [Ref. 1:p. 18].

Consequently, the parameters a3 and d, are always zero. In

addition, the parameter 0. must be set at a constant value

because it cannot be identified independently from 04 for this

manipulator configuration. Table I shows the table of the

nominal kinematic parameters. The parameters that are defined

to be zero are in boldface type.

TABLE I. NOMINAL KINEMATIC PARAMETER TABLE
(UNCONSTRAINED CASE)

DEG mm mm DEG DEG

0.0 0.0 1492.3 90.0 0.0

Link # 80 d a ( P
DEG mm mm DEG DEG

10.0 0.0 0.0 -90.0 0.0

2 90.0 0.0 0.0 -90.0 0.0

3 0.0 730.3 0.0 0.0 0.0

4 -90.0 0.0 82.55 90.0 0.0

5 90.0 0.0 0.0 90.0 0.0

f 0, W PX PY pz6

DEG DEG DEG mm mm mm

0.0 0.0 0.0 50.8 0.0 50.8

Havinq established a valid, working model of the Model G

Master-jiave Manipulator, the task was then to obtain joint

variable data for a variety of manipuicLr pomses. This was

21



accomplished using Program JOINT. Program JOINT uses a random

number generator subroutine to generate the joint variable

data and then stores it in a data file called TELE-VAR.DAT.

Program JOINT is run a second time to obtain joint variable

data that will be used in a verification program that will be

described in more detail later. This second set of joint

variable data is stored in file POSEVER.DAT.

The next step is to generate pose information for the

Model G Manipulator simulation. Program POSE reads the joint

variable data from file TELE-VAR.DAT and the table of nominal

kinematic parameters from file INPUT.DAT and computes the

manipulator pose using a forward kinematic solution. The set

of joint variables and the corresponding manipulator end point

pose information are stored in file TELE-POS.DAT. In program

POSE, estimates of measurement noise and the encoder offsets

are added to the data through INPUT.DAT.

The actual kinematic parameters are identified by program

ID6, using the previously discussed non-linear least squares

method. Program ID6 consists of three main components. The

first component is where the nominal kinematic parameters are

read from INPUT.DAT and the pose data for each observation are

read from TELE-POSE.DAT. The program then defines the initial

values of the model and the parameters required by the

identification subroutine ZXSSQ are initialized. The

identification subroutine ZXSSQ is the second major component

of program ID6. The details of how ZXSSQ works can be found in
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the parameter identification section of Chapter II and in

Appendix A. ZXSSQ iteratively estimates the gradient and uses

the estimate to produce an updated approximation of the model

parameters. The cycle continues until the kinematic parameters

are identified consistently to four significant figures. The

third major component of program ID6 is the subroutine TELE-

ARM which takes the current estimate of the model parameters,

computes a forward kinematic solution using the estimated

parameters, and then calculates the error between the model

prediction and the measured pose data. This error is, in turn,

used by ZXSSQ to determine the gradient. The output of program

ID6 is file RESULT.DAT which consists of the actual,

identified kinematic parameters of the manipulator and the

calculated RMS difference between the nominal and identified

kinematic parameters. The RMS quantity is broken down into

length and angular error parameters (K, and KO) respectively.

These error parameters reflect the accuracy of the

identification process.

The final stage of the computer simulated calibration

piocess is a verification program designed to determine the

accuracy that the manipulator could attain if the identified

kinematic parameters were to replace the nominal parameters in

the manipulator's controller. Program VERIFY reads the nominal

kinematic parameters from INPUT.DAT and the identified

parameters from RESULT.DAT and computes separat.ely for each

set of parameters a forward kinematic solution. These
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solutions are used to calculate the differential position and

orientation matrix.

0 -8, 6Y dx

AT= 8Y 8,- 0 dy (13)

06 0X 0 dz

The position error is calculated as follows:

POSERR = dx +dy2+dz' (14)

The position error is indicative of the accuracy of the

calibrated manipulator. Figure 7 shows a flowchart of the

programs used in the simulated calibration process. These

programs and data files can be reviewed in Appendix B.

B. CONSTRAINED (BALLEAR) METHOD

The ballbar method involves the use of a passive end point

motion constraint to obtain pose data. The end point of the

manipulator is connected to a fixed point on a table by means

of a ballbar of known length. Figure 8 shows the Model G

Master-Slave Manipulator configuration with the ballbar of

length 552.8 mm attached. This ballbar length was obtained by

fixing the ballbar at a location very near the manipulator end

point when it is in the zero position. The other end of the

bar was connected to the manipulator end point. The ballbar

was then cycled through its reachable volume while constrained

by the dimensional limits of the manipulator. This approximate
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bar length was chosen because it maximized the possible range

of joint displacements.

The coordinate frames were allocated in accordance with

the Denavit-Hartenberg criteria. With the exception of the

world coordinate frame, the coordinate frames were positioned

exactly as they were for the unconstrained calibration.

However, special consideration must be given to the choice of

world coordinate frame. if it is assumed that all the Model G

Manipulator joint displacements are fixed, a rotation of frame

0 relative to the world frame results in a change of the

manipulator end point (the origin of frame 6) coordinates in

the x,, y., z, frame. The distance between the world coordinate

frame and manipulator end point is the fixed length of the

ballbar and it remains unchanged. Since the relative rotation

between the world frame and the base frame cannot be measured

the conclusion is that this rotation cannot be identified.

iitnce, it is logical that the world coordinate frame selected

be orthogonal to the base frame. The location of the base

frame is arbitrary as long as the z- axis is aligned with the

first join- axis.

The transformation from the world coordinate frame to the

base frame is a function of the parameters x,, y,, and z, only.

Because parameters z, and d, are measured in the same

direction, they cannot both be identified. Therefore, the

parameter z, is set to zero. The transformation from the world

coordinate frame to the base frame can be expressed as follows
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A, =TRANS(xyd, 0) (15)

In addition, it has been determined the parameters x., y., and

6. are not independent. The parameter 60 cannot be identified

and was set to zero. The table of nominal kinematic parameters

for ball method calibration of the Model G Manipulator is

shown in Table II. The parameters in bold face type were not

identified in the calibration process. For the ballbar

calibration method, there are 22 kinematic parameters that

must be identified.

TABLE II. NOMINAL KINEMATIC PARAMETER TABLE
(CONSTRAINED CASE)

x' yW z4
mm mm mm

! _42.7 -132.95 0.0

Link # 680 d a a _ _

1 0.0 0.0 0.0 -90.0 0.0

2 90.0 0.0 0.0 -90.0 0.0

3 0.0 0.0 0.0 0.00 0.0

4 -90.0 0.0 82.55 90.0 0.0

5 90.0 0.0 0.0 90.0 0.0

80 0 W px I py PZE
DEG DEG DEG mm mm mm

0.0 0.0 0.0 50.8 0.0 5 .

As in the unconstrained calibration process, the simulated

ballbar method calibration of the Model Maniula- is

accomplished with a series of computer prcgra7.. A f1 wchart

of the programs used is shown in Four . 7 .
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is fixed at 552.8 mm and at each end of the bar is a ball

joint capable of 90c of solid angle rotation. One end of the

bar is attached to a fixed point in space and the other end is

attached to the end flange of the Model G Manipulator. Pose

information is created in program TELEBAR by using a random

number generator routine to generate the angles that the bar

makes with the z. and y. axes (Figure 9) . The position of the

ballbar end point is

[x, y, z ] =R [0, 0, 0, 1] (16)

where the transformation R is defined as follows

R=ROT (z, 0) ROT(y, )TRANS (x, r) (17)

For each pose, the distance d from the manipulator end

point to the origin of the world coordinate frame is

calculated using

_= x y ' Z ' ( 1 8 )

where x, y, and z are the coordinates of the manipulator end

point in space relative to the world coordinate frame. Program

TELEBAR empicys the previously discussed non-linear least

squares algorithm ZXSSQ to minimize the function

F = d -f (19)

where 9 is the length of the balibar subroutine ZXSSQ

iteratively estimates a gradient and produces an approximation

of the joint displacements necessary to establish the current
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Figure 10. Kinematics of Ballbar

pose. ZXSSQ uses subroutine TELE-ARM to compute the forward

kinematic solution of the manipulator using the current values

of joint displacements. TELE-ARM calculates F which is used

by ZXSSQ to determine the gradient. The cycle continues until

the joint variables for the pose are consistently identified

to four significant figures. The joint displacements are

stored in file TELE-SOLN.DAT. Program TELEBAR is run a second

time to generate joint variable displacements for use in the

verification phase. The second set of joint variables is

stored in file POSEVER.DAT.

Progra FORWARD is used to check the validity of the joint

variable data oenerated by program TELEBAR. Prooram FORWARD
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computes the forward kinematic solution for the Model G

Manipulator for each set of joint displacements. The distance

d from the manipulator end point to the world coordinate frame

is

d= x 2 +y2±z2  (19)

where x, y, and z are the coordinates of the manipulator end

point relative to the world coordinate frame. if d equals the

length of the ballbar, the corresponding set of joint

displacements is valid. Program FORWARD is not a part of the

calibration process, but it is an expeditious way to check the

joint variable data.

As in the unconstrained calibration process, the

identification of the actual kinematic parameters of the

manipulator is accomplished by program ID6. Program ID6 reads

the nominal kinematic parameters from INPUT.DAT and the pose

information from TELE-SOLN.LAT. The actual kinematic

parameters of the manipulator are stored in file RESULT.DAT.

Program VERIFY calculates the accuracy of the manipulator

using the actual identified kinematic parameters as was

explained earlier. These computer programs are shown in

Appendix B.
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IV. DISCUSSION

In order to obtain a satisfactory comparison of the two

calibration methods, a number of computar simulated

calibrations were performed on each confiquration. In these

simulations, the independent variables were the number of

observations taken and the level of measurement noise present.

The dependent variables were the accuracy of parameter

identification and the manipulator accuracy using the

identified kinematic parameters. The results are shown in

Figure 11 through Figure 18. For the unconstrained

configuration, the low noise value was set at 0.1 mm. The

accuracy of parameter identification and the position error

were each separately plotted against the number of

observations. The same procedure was repeated with the

measurement noise increased ten times to 1.0 mm. The entire

process was again repeated using the low and high noise levels

for the ballbar configuration.

In general, accuracy of parameter identification increased

and the position error decreased as the number of observations

increased regardless of noise level and calibration

configuration used. For the low noise level, the calibrated

manipulator accuracy is of the same order of magnitude as the

attainable repeazability (0.15 mm) for this type of

manioulatcr. This suggests that in the presence of a readily
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attained low level of measurement noise (0.1 mm) the

manipulator accuracy attained using the ballbar method is

roughly equal to that attained using the unconstrained method

and is, in fact, quite satisfactory. In addition, the

manipulator accuracy can be improved by increasing the number

of observations taken during the measurement phase of the

calibration. There reaches a point, however, when making

additional observations produces no marked improvement in

manipulator accuracy. Table III is a table of the nominal and

identified kinematic parameters for the unconstrained

calibration using low noise and 6C observations. Table IV

shows the same parameters for the ballbar calibration using

low noise and 55 observations.

When the high noise level (1.0 mm) was used, the position

error obtained using the ballbar method was unsatisfactory

even when a large number of observations were made. For the

unconstrained case, the position error was an order of

magnitude higher than it was using the low noise level. The

ability to obtain high manipulator accuracy is directly

dependent on the effectiveness with which noise can be

eliminated from the measurement process. In actual

calibrations, the reduction of measurement noise is a pivotal

step in the process.

For calibrations of serial link manipulators, the ballbar

method has been proven to be a convenient alternative to the

use cf expensive ancillary measurement equipment. With this in

34



0.

i

0

z

LU

a

0
40

00

00
< 1

20 3 s0 6 80 9
NUMBER OF OBSERVATIONS

Figure 11. Accuracy of Parameter Identification/Low Noise
(Unconstrained Method).

0

C

z
0

C!o

20 35 60 65 80 as
NUMBER OF OBSERVATIONS

Figure 12. Manipulator Accuracy/Low Noise
(Unconstrained Method).

35



2z
0

<0

P:

z

U-

0

Q
M:

20 35 Be 68 so 98
NUMBER OF OBSERVATIONS

Figure 13. Accuracy of Parameter Identification/Low Noise
(Bailbar Method) .

CC

z
0

o

CL

20 35 80 860 SO 9
NUM1BER OF OBSERVATIONS

Figure 14. Manipulator Accuracy/Low Noise (Bailbar Method).

36



,a

0

z
w

< C

20 35 go 65 so as
NUMBER OF OBSERVATIONS

Figure 15. Accuracy of Parameter Identification/Noise x 10
(Unconstrained Method).

0

w
z
0

0

CL

20 as 50 65 so 95
NUMBER OF OBSERVATIONS

Figure 16. Manipulator Accuracy/Noise x 10
(Unconstrained Method).

3-7



,i0

C)

z

LL.0

20 35 so 868 so 95

NUMBER OF OBSERVATIONS

Figure 17. Accuracy of Parameter Identification/Noise x 10
(Ballbar Method).

0

cc

z

0

0

20 35 50 65 so 95

NUMBER OF OBSERVATIONS

Figure 18. Manipulator AccuracyNoise x 10
(Ballbar Method).

?8

m m m m n



TABLE III. NOMINAL AND IDENTIFIED KINEMATIC PARAMETERS USING

UNCONSTRAINED METHOD WITH LOW NOISE AND 60 OBSERVATIONS

PARAMETER NOMINAL VALUE IDENTIFIED VALUE

8. 0.0 1.00093
d 0.0 0.26324

a, 1492.3 1492.54560

5, 90.0 91.00015

680 0.0 0.99907
d 0.0 0.28461

a 0.0 0.25271

a -90.0 -89.00049

50, 90.0 90.99987
d 0.0 0.24319

a 0.0 0.25737

a -90.0 -88.99892

d' 730.3 730.55844

a 0.0 1.00002
0.0 0.99810

60 -90.0 -89.00627

82.55 82.78718

c 90.0 90.97766

680 90.0 91.02502

d 0.0 0.26702

0.0 0.23813
(_ 90.0 91.04527

80- 0.0 0.99364

Px, 50.8 51.01315

Pz- 50.8 51.04286

hand, an effort was made to determine which world coordinate

frame locations yielded the smallest manipulator position

error. Peferring back to Figure 8, the x-coordinate of the

world coordinate frame which is the distance to the first

.. dr-:s was set at each of the fc1lowLing three values:
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TABLE IV. NOMINAL AND IDENTIFIED KINEMATIC PARAMETERS USING
BALLEAR METHOD WITH LOW NOISE AND 55 OBSERVATIONS

PARAMETER NOMINAL VALUE IDENTIFIED VALUE

x, 1542.7 1543.20468

y -132.95 -132.73788 _

d. 0.0 0.23486

a 0.0 0.26105

a -90.0 -89.00081

60, 90.0 91.00244

d. 0.0 0.31004

a- 0.0 0.30212

c- -90.0 -89.00261

d, 0.0 0.42076

a, 0.0 1.00434

3. 0.0 1.00388

60, -90.0 -89.00484

a4 82.55 82.81179

a, 90.0 90.98414

60. 90.0 91.01540

d 0.0 0.24605

a. 0.0 0.23570

90.0 90. 9893A

0.0 1.01387

Pxe 50.8 50.65428

Pz, 50.8 50.65121

x=1292. 7 mm, 1542.7 mm, and 1792.7 mm. At each of these x-

coordinate levels, the world coordinate frame was positioned

at each node of a five by five y-z grid and the position error
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was computed at each location. Figure 19, Figure 20, and

Figure 21 illustrate the results. The location of the world

coordinate frame does not significantly influence the position

error obtained as long it is within the manipulators working

volume.

The ballbar method is ideal for calibration of industrial

robots in that it is quick, inexpensive, and simple to

perform. The manipulator can be calibrated in place without

the use of expensive measurement and the ballbar calibration

method can produce manipulator accuracy of the same order of

magnitude as other more costly and tedious methods.
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V. CONCLUSIONS

" In general, accuracy of parameter identification and
manipulator accuracy increased as the number of
observations taken increased.

" Accuracy of calibration process is directly related to the
extent that measurement noise is reduced.

* Balibar method produces manipulator accuracy of the same
order as the unconstrained method and it is less
expensive, quicker, and easier to perform.

" The location of the ballbar does not significantly
influence the accuracy of the calibration as long as it is
within the robot's working volume.



APPENDIX A: ZXSSQ

ZXSSQ is a Levenberg-Marquardt finite difference routine

for solving non-linear least squares. The problem can be

stated as follows:

Given M non-linear functions F,, F2, ... , F, of a vector

parameter x, minimize over x

F (x) =F 2 x) 2 .. +F (x)+

where x = (x-, x2, .. .,xI) is a vector of N parameters to be

estimated. When fitting a nonlinear model to data, the

functions F should be defined as follows:

F. (x) =y,-g( ;v4) i =i1, 2,. , M

where Y_ is the i" observation of the dependent variable

V" (V , 2 ,, . . , v,,') is a vector containing

the i )bservation of the NV independent variables

g is the function defining the non-linear model

ZXSSQ is based on a modification of the Levenberg-Marquardt

algorithm which eliminates the need for explicit derivatives.

Let x be an initial estimate of x. A sequence of

approximations to the minimum point is generated by

xr a = m JJ J - J, F ( x:)

where J. is the numerical Jacobian matrix evaluated at x7

D. is a diagonal matrix equal to the diagonal of J.J_

a. is a positive scaling factor
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Lhen forward differences are used, the Jacobian is calculated

by

1

[F. (x+hu.) -F- (x)

where u is the j" unit vector

h- = max (IxI, 0.1) eps

eps is the relative precision of floating point
arithmetic

For central difference, the Jacobian is as follows

1 S[F, (x*thu,) -F. (x-h u) ]2h

Finally,

= J+ -- [F ( x ) - F ( x - J, ] -

47



APPENDIX B: COMPUTER PROGRAMS

PROGRAM JOINT

C This program generates the joint variable data for the
C MODEL G manipulator simulation by random methods.

INTEGER I, J, K, NOBS, MAXNOBS
PARAMETER (MAXNOBS=360)
REAL Q(MAXNOBS,6), QMIN(6), QMAX(6)

COMMON /C/ Q, QMAX, QMIN

C DATA QMIN/ -160.0, -223.0,-52.0, -110.0, -100.0, -266.0 /
C DATA QMAX/ 160.0, 43.0, 232.0, 170.0, 100.0, 266.0 /
C WRITE (6,*) 'Volume is MAX-POSSIBLE'

DATA QMIN/ -180.0, -180.0, 0.0, -180.0, -180.0, -180.0 /
DATA QMAX/ 180.0, 180.0, 762.0, 180.0, 180.0, 180.0 /

WRITE (6,*) 'Volume is FULL'

C DATA QMIN/ -90.0, -90.0, -90.0, -90.0, -90.0, -90.0 /
C DATA QMAX/ 90.0, 90.0, 90.0, 90.0, 90.0, 90.0 /
C WRITE (6,*) 'Volume is HALF'

C DATA QMIN/ -45.0, -45.0, -45.0, -45.0, -45.0, -45.0 /
C DATA QMAX/ 45.0, 45.0, 45.0, 45.0, 45.0, 45.0 /
C WRITE (6,*) 'Volume is QUARTER'

C Open output data file

OPEN (18, NAME='TELE-VAR.DAT', STATUS='NEW')

C Input number of observations from data file

OPEN (19, NAME='INPUT.DAT', STATUS='OLD')
DO I=1,10
READ (19,*)
ENDDO

READ (19,*) NOBS
WRITE(*,*) 'NOBS=',NOBS

CLOSE (19)

C Call the generation routine

CALL MSPREAD (NOBS)

C Save the joint variable data

DO II = 1, NOBS
WRITE (18,*) Q(iI,I),Q(I,2),Q(II,3),Q(II,4),Q(II,5),Q(II,6)
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ENDDO

CLOSE (18)
STOP
END

C

SUBROUTINE MSPREAD (NOBS)

C This subroutine generates the joint data by the Monte Carlo method.
C The six joint variables are generated from six independant
C uniform random variables.

INTEGER I, J, K, NOBS, MAXNOBS
PARAMETER (MAXNOBS=360)
REAL Q(MAXNOBS,6), QMIN(6), QMAX(6)
INTEGER*4 ISEED
REAL MAGQ(6),NUM

COMMON /Cl/ Q, QMAX, QMIN

C Get the random seed

WRITE (6,") 'Type in a 6-digit random number seed'
READ (5,*) ISEED

C Calculate the Scaling factor for each random variable

DO I =1, 6
MAGQ(I) = QMAX(I)-QMIN(I)
ENDDO

C Generate the joint data

DO J =1, NOBS
DO I =1, 6

CALL RANDOM (ISEED,NUM)

Q(J,I) = QMIN(I) + MAGQ(I) *NUM

ENDDO
ENDDO

RET:URN
END

C * * * * * * * * **

SUBROUTINE RANDOM (x,z)

REAL FM, FX, Z
INTEGER A, X, I, M
DATA !/1'/

IF ( .El- 0 )GO TO 1000
P=0
M=2**2

FM= M
2**""C + 3
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1000 X= MOD( A*X ,M)
FX= X
Z= FX/ FM

RETURN
END
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C

PROGRAM POSE

C This program generates the pose data for the MODEL G manipulator

O simulation. it reads the joint variable data from file TELE-VAR.DAT.

INTEGER*4 ISEED
REAL*8 RNX, RNY, RNZ, MAGNX, MAGNi
REAL*8 RNl, RN2, RN3, RN4, RN5, RN6
INTEGER I, J, K, NOBS, MAXNOBS, N
PARAMETER (MAXNOBS=360)
REAL-8 DANGLE, DLENTH
REAL*8 PI
PARAMETER (PI=3.141592653589793)

REAL*8 DTW, DTl, DT2, DT3, DT4, DT5
REAL*8 DDW, DDI, DD2, DD3, DD4, DD5
REAL*8 AAW, AA1, AA2, AA3, AA4, AA5
REAL*8 ALW, ALl, AL2, AL3, AL4, AL5
REAL*8 BLW, BLi, BL2, BL3, BL4, BL5
REAL*8 DF6, FI6, TH6, S16, PX6, PY6, PZ6, D3
REAL*8 THETAI, THETA2, THETA3, THETA4, THETA5, THETA6
REAL*8 TRW, THi, TH2, TH3, TH4, TH-S
REAL*8 TW(4,4), Tl(4,4), T2(4,4), T3(4,4)
REAL*8 T4(4,4), T5(4,4), T6(4,4). TRPY(4,4), TXYZ(4,4)
REAL*8 TIHAT(4,4), T(4.4)

C Initialize the TIMAT matrix to an I matrix:

DATA TIMAT/l, 0,0,0f,,1,,0,0,0,1,0,0,0,0,1/

C Get the random number seed

WRITE (6,") 'Type in a 6-digit random number seed'
READ (5, *) ISEED

C Open input files and output data file

OPEN (8, NAME='TELE-VAR.DAT', STATUS='OLD')
OPEN (9, NAME='TELE-POS .DAT', STATUS='NEW')
OPEN (l0,NAMF='INP'JT.DAT', STATUS='OLD')

C Input parameters

read (l0,*)
read (IC,*) dtw,ddw,aaw,aiw,blw
read (l0,*) dt1,dd1.,aa1,a11,bll
read (10,") dt2,dd2,aa2,a12,b12
read (l0,*) dt3,dd3,aa3,a13,b13
read (10,"*) dt4,dd4,aa4,a14,b14
read (l0,*) dtS,ddSaa5,a15,bi'5
read (l0,*)
read (10,") df6,th6,si6,px6,py6,pz6
read (10,f*)
read (!Of*) nobs,n,dangle,dlenth,magnx~magnI

C Add encoder Offsets:

DTX DTW DAINGLE
DTI D1 + DAINGLE



DT2 = DT2 + DANGLE
DT3 = DT3 defined
DT4 = DT4 + DANGLE
DT5 = DT5 + DANGLE

C Set link parameters for the manipulator:

ALW = ALW + DANGLE
ALl = ALl -t DANGLE
AL2 = AL2 + DANGLE
AL3 = AL3 + DANGLE
AL4 = AL4 + DANGLE
AL5 = AL5 + DANGLE

AAW = AAW + DLENTH
AAl = AAI + DLENTH
AA2 = AA2 + DLENTH
AA3 = AA3 defined
AA4 = AA4 + DLENTH
AA5 = AA5 + DLENTH

DDW = DDW + DLENTH
DDI = DDI + DLENTH
DD2 = DD2 + DLENTH
DD3 = DD3 + DLENTH
DD4 = DD4 defined
DD5 = DD5 + DLENTH

BLW = BLW defined
BLl = BLI defined
BL2 = BL2 defined
BL3 = BL3 + DANGLE
BL4 = BL4 defined
BL5 = BL5 defined

DF6 = DF6 + DANGLE
TH6 0.0
SI6 = 0.0
PX6 = PX6 + DLENTH
PY6 0.0
PZ6 PZ6 + DLENTH
D3 = DD3

C Loop NOBS times

D2, I = i, NOBS

C :nitialize the T matrix to an I matrix:

DO J=l,4
DO K=1,4

T(J,K) = TIMAT(J,K)
ENDDO
ENDDO

C Manipulator joint angle input:

READ (8,*) THETAI, THETA2, THETA3, THETA4, THETA5, THETA6

TRW = ETW
THI = DTI + THETAl
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TH2 = DT2 * THETA2
TH3 =DT3
TH4 = DT4 + THETA4
TH5 = DT5 + THETA9
FI6 = DF6 + THETA6

DD3 = D3 + THETA3

C Compute the T matrices, TW thru T6:

CALL TRANSFORM ( ALW, AAW, DDW, TRW, BLW, TW
CALL TRANSFORM ( ALl, AAi, DD1, THi, BLi, Ti
CALL TRANSFORM ( AL2, AA2, DD2, TH2, BL2, T2
CALL TRANSFORM ( AL3, AA3, DD3, TH3, BL3, T3
CALL TRANSFORM ( AL4, AA4, DD4, TH4, SL4, T4
CALL TRANSFORM ( AL5, AA5, DDS, TH5, BL5, T5

CALL T3RPY ( FI6, TH6, S16. TRPY
CALL TJxYZ ( PX6, PY6, PZ6, TXYZ
CALL MATMULC ( T6, TRPY, TXYZ)

C Compute the overall transformation, T:

CALL MATMULA (T, TW
CALL MATMULA (T, Ti
CALL MATMULA (T, T2
CALL MATMULA (T, T3
CALL MATMULA (T, T4
CALL MATMULA (T, T5
CALL MATMULA (T, T6

C Generate the random noise

CALL RANDOM(ISEED,RNX)
CALL RANDOM(ISEED,RNY)
CALL RANDOM(ISEED,RNZ)

CALL RANDOM(ISEED,RN1)
CALL RANDOM(ISEED,RN2)
CALL RANDOM(ISEED,RN3)
CALL RANDOM(ISEED,RN4)
CALL RANDOM(ISEED,RN5)
CALL RANDOM(ISEED,RNE)

RNX =MAGNX*( 2.0*RNX - 1.0
RNY = MAG3NX*( 2.0*RNY - 2.0
RNZ = MAGNX*( 2.0*RNZ - 1.0

RNI =MAGN1*( 2.O*RNI - 1.0
RN2 = MASNI*( 2.O*RN2 - 1.0
RN3 = MAGNI*( 2.C*RN3 - 1.0
RN4 = MAGN''*( 2.O*RN4 - 2.0
RNS MAGN1*( 2.0*RN5 - 2.0
RN6 = MAGNI*( 2.0*RN6 - 1.0

C Add ncise to measurements and encoder readings

T(1,4) = 7(1,4)- N
T(2,4) = 7(2,4) -RNY
TOM,4 = :(3,4) -*

THETA! = THETA! -RNI



THETA2 = THETA2 +RN2
THETA3 = THETA3 -RN3
THETA4 = THETA4 +RN4
THETA5 = THETA5 +RN5
THETA6 = THETA6 +RN6

C Store the manipulator joint vector and measured tool pose

WRITE (9,991) THETAI, THETA2, THETA3, THETA4, THETA5, THETA6
WRITE (9,992) T(1,4)
WRITE (9,992) T(2,4)
WRITE (9,992) T(3,4)
WRITE (9,*)

C Format below decides the digits of accuracy of simulation data

991 FORMAT ( 6F12.6 ) !Joint vector data
992 FORMAT ( F12.5 ) !Measurement data

C End do-loop for counter I

ENDDO

WRITE (6,*) 'Data stored in F12.5, F12.4 format'

CLOSE (8)
CLOSE (9)
STOP
END

C

SUBROUTINE RANDOM (x,z)

REAL FM, FX, Z
INTEGER A, X, I, M
DATA I/l/

IF ( 1 .EQ. 0 ) GO TO 1000
I=0
M= 2 ** 20
FM= M
A= 2**10 * 3

1000 X= MOD( A*X ,M)
FX= X
Z= FX/ FM

RETURN
END

C 5
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C

PROGRAM TELEBAR

C This program generates a set of joint angles for the calibration
C of the MODEL G manipulator using a ball bar to constrain the end
C point of the manipulator.

INTEGER LDFJAC, M, N, obs, nobs
PARAMETER (LDFJAC=3, M=LDFJAC, N=6)

REAL-8 DTl, DT2, DT3, DT4, DT5
REAL*8 DDl, DD2, DD3, DD4, DD
REAL*8 AAl, AA2, AA3, AA4, AA5
REAL*8 ALl, AL2, AL3, AL4, AL5
REAL*8 BI-l, BL2, BL3, BL4, BL5
REAL-8 DF6, F16, TH6, S16, PX6, PY6, 2Z6
REAL*8 XW, YW, ZW

INTEGER infer, ier, iopt, nsig~maxfn
REAL*8 FJAC(LDFJAC,N), xjtj((n+l)*n/2), xJac(ldfjac,n)
REAL*8 parm(4), fjldfjac), work((5*n)+(2*m)+((n+l)*n/2))
REAL*8 X(N)
real*8 r~phimax,phimin,thetamax~thetamin,phi,theta
real*8 xb,yb,zb,ssq,rr,magnx,magnl

EXTERNAL TELE_ARM

INTEGER I, J, K
REAL*8 TDES(4,4), qmax(6), qmin(6), SCALE, DANGLE, DLENTH, NUM
COMMON /PDATA/ TDES, DANGLE, DLENTH, r
COMMON /KIN/ DT1,DT2,DT3,DT4,DT5,
& AL1,AL2,AL3,AL4,AL5,
& AA1,AA2,AA3,AA4,AA5,
& DD1,DD2,DD3,DD4,DD5,
& BLI,BL21,BL3,BL4,BL5,
& XW,YW,ZW,
& DF6, THE, S16, 2X6, PY6, PZ6

C Joint angle ranges

data qru-in/-30 .0, -45. C, 0.0, -180.0,0.0, -180.0/

data qmax/215.0, 45.0, 762.0, 180.0, 90.0, 180.0/

C Initialize data variables

cbs=0

C Open data files for input

OPEN (10, NAME-' TELE-SCLN.DAT', STATUS='NEW')
open (9, NAM='NPUT.DAT', STATUS='old')

C Read input kinematicz data

read (9,*)
read (9,*) xw,yw,zw
read (9,*) dtl,,ddl.aal,all,b11
read (9, *) adt20, da2, a12,ib12-
reaJ (9,*) dt.3,dd3,aa3,a1'3,bi3
readi (9,*) dt-4,dd4,aa4,a14,b14



read (9,*) dt5,dd5,aa5,a15,b15
read (9,*)
read (9,*) df6,th6,si6,px6,py6,pz6
read (9,*)
read (9,*) nobs,r,dangle,dlenth,maqnx,magnl

close (9)

C Adjust nominal values

xw=xw+dlenth

yw=yw+dlenth

dt2=dt2±dangle
dt 4=dt 4 +dangle
dt 5=dt 5+dangie

all=all+dangle
al2=a12+dangle
a13=al3+dangle
a14=al4+dangle
a15=al5+dangle

aal=aal+dlenth
aa2=aa2+dlenth
aa4=aa4±dlenth
aa5=aa5+dlenth

ddl=ddl+dlenth
dd2=dd2+dlenth
dd3=dd3+dlenth
dd5=dd5 +dient h

b13=bl3+dangle

df6=df6+dangle
px6=px6i-dlenth
pz6=pz6+dlenth

C Limits on bar rotation

phimax=180 .0
phimin=-180 .0
thetamax=90 .0
thetamin=-90 .0

C Get random number seed

c ISEED = 123456

write (6,*) 'Type in a 6-digit random number seed'

read (5, *) iseed

C Wri-te NOBS to TELE-SOLN.DAT

write (10,*) nobs

C Start of main loop

10:.0 ob3=obs-~l



C Set joint anqles to zero

do i=l,n
x(i) =0.0
enddo

C Get random bar angles

1000 call random (iseed,num)
phi=phimin± (phimax-phimin) *num
call random (iseed,num)
theta=thetamin+ (thetamax-thetamin) *num

C Calculate end point of the bar

xb=r~cosd (theta)
yb=r*sind(theta) *cosd(phi)
zb~r*Sind(theta) *sind(phi)

C Reacheability calculation

if (z .1t. 0.0) go to 1000

C Establish desired tool pose

do i.i=1,4
do jj=l, 4

TDES(ii, jj)=0.0
enddo
enddo

TDES (1, 4) =xb
TDES (2, 4) =yb
TDES (3, 4) =zt
TDES(4,4) =1.0

C Call IMSL ZXSSQ for inverse kinematic solution

nsig=4
eps=0 .0
delta=0 .0
maxfn=500
lopt= I
ixjac=ldf jac

CALL ZXSSQ(teie arm,m,n,nsig,eps,delta,maxfn,iopt,parmr,x,
& ssq,f,xjac,ixjac,xjtj,work,infer,ier)

C Print results to 2 decimal places

write(6,*) obs,ssq,iseed
WRITE (10,*) X('-), X(2), X(3), X(4), X(5), X(6)

C Continue for other bar angles

if (obs .1t. nobs) go to 1 110

CLOSE (10)



WRITE(6,*) XW,YW,ZW
END

C

SUBROUTINE teleARIM (X,M,N,F)

C This subroutine calculates the non-linear function for the use of
C the IMSL routine ZXSSQ. It is the forward kinematic solution for
C the MODEL G manipulator.

INTEGER M, N
REAL*8 X(N), F(M)

INTEGER II, JJ
REAL*8 DTl, DT2, DT3, DT4, DT5
REAL*8 DDl, DD2, DD3, DD4, DD5
REAL*8 AM1, AA2, AA3, AA4, AA5
REAL*8 ALl, AL2, AL3, AL4, AL5
REAL*8 BLl, BL2, BL3, BL4, BL5
REAL*8 DF6, F16, TH6, S16, PX6, PY6, PZ6
REAL*8 XW, YW, ZW, D3

REAL*8 TI, TH2, TH3, TH4, TH5
REAL*8 T0(4,4), Tl(4,4), T2(4,4), T3(4,4), T4(4,4)
REAL*8 T5(4,4), T6(4,4), trpy(4,4 ), txyz(4,4)
REAL*8 TIMAT(4,4), T(4,4)
REAL*8 disq,dis

INTEGER I, J, K
REAL*8 TDES(4,4), DANGLE, DLENTH, r

COMMON /PDATA/ TDES, DANGLE, DLENTH, r
COMMON /KIN/ DT1,DT2,DT3,DT4,DT5,

& ALI, AL2,AL13, AL4, AL5,
& AA1,AA2,AA3,AA4,AA5,
& DD1,DD2,DD3,DD4,DD5,
& BL1,BL2-,BL3,BL4,BL5,
& xw,YW,ZW,
& DF6,TH6, SI6,PX6,PY6,Pz6

C initialize the TIMAT matrix to an I matrix:

DATA TIMAT/l, 0,0,0,0,1, 0,0,0,0,1,0,0,0,0,1/

C initialize the T matrix to an I matrix

DO 11I = 1,

DO iiJ 1,4
T(II,JJ) = TIMAT(II,JJ)

ENDDOC
ENDDO

C Manipulator joint angles

THI = DTI +X(i)

TH2 = DT2 -X(2)
TH3 = DT3
TH4 =DT4 + X(4)
THS = DT5 X(5)

F6= DF6 X(6)



D3 = DD3 + X(3)

C Compute the T matrices, Ti thru T6:

CALL t3xyz (xw,yw,zw,TC)

CALL TRANSFORM ( ALl, AAI, DDI, THI, BLI, T1
CALL TRANSFORM ( AL2, AA2, DD2, TH2, BL2, T2
CALL TRANSFORM ( AL3, AA3, D3, TH3, BL3, T3
CALL TRANSFORM ( AL4, AA4, DD4, TH4, BL4, T4
CALL TRANSFORM ( ALS, AA5, DDS, TH5, BLS, T5

CALL t3rpy ( fi6, th6, siA, trpy
CALL T3XYZ ( PX6, P6, PZ6, txyz
CALL matmulc ( t6, trpy, txyz )

C Compute the overall transformation, T:

CALL MATMULA T, TO
CALL MATMULA T, T1
CALL MATMULA T, T2
CALL MATMULA T, T3

CALL MATMULA T, T4

CALL MATMULA T, T5
CALL MATMULA T, T6

C Calculate the function F

f (1)=t (1, 4)-tdes(1, 4)
f (2) =t (2, 4) -tdes (2,4)
f (3)=t (3,4)-tdes (3,4)

RETURN
END

C

SUBROUTINE RANDOM (x,z)

C This subroutine generates random numbers in the range 0-1
C using a supplied seed x, the returned random number being z.

REAL FM, FX, Z
INTEGER A, X, i, M

DATA I/!/

IF ( i .EQ. 0 ) GO TO 1000
I=0
M= 2 ** 20
FM= M
A= 2**1 + 3

100o X= MOD( A*X ,M)
FX= X
Z= FX/ FM

RE TUR N

ENP

S-*** ** * *** ***-*** *****************************************



C ** *tr t* ** **** *t ** * t **

PROGRAM !D6

C Robot Identification using the Non-linear Least Squares method.
C Simulation data is read for the MODEL G manipulator >_om
C the data file TELE-SOLN.DAT

C Change parameter LDFJAC to change the number of observations,
C set LDFJAC = Number of observations

INTEGER LDFJAC, MM, M, NN, N, NSIG, MAX-N, IOPT, IXJAC, INFER, IER
PARAMETER (LDFJAC=90, MM=LDFJAC, NN=22)

REAL*8 rJAC(L-DFJAC,NN), XJTJ((NN-tl)*NN/2)
REAL*8 PARM(4), F(LDFJAC), WORK( (5*NN)+ti2*MM)±( (NNtl)*NN/2))
REAL*8 X(NN)
EXTERNAL TELE ARM

REAL*8 DAN GLE, DLENTH, TQ, DQ, EPS, DELTA, SSQ
REAL-8 SQER-,i, SQERR2
REA7*8 XW,YW,ZW

REALT*8 DTI, DT2, DT3, DT4, D:5
REAL*8 DDl, DD2, DD3, DD4, DD5
REAL*8 AA1, AA2, AA3, AA4, AA5
REAL-8 A7l, AL2, AL3, AL4, ALS
REAL*8 BLl, BL2, BL3, BL4, BL5
REAL-8 F16, DF6, TH6, SI6, PX6, PY6, PZ6

INTEGER 1, j, K, NOBS, MAXNOBS
REAL*8 magnx,magni
PARAMETER (MAXNOBS=lOO)
REAL_*8 TETI (MAXNOBS), TET2 (MAXNOES), TET3 (MAXNOBS)
REAL*8 TET4 (MAXNOBS), TET5 (MAXNOBS), TET6 (MAXNOBS)
REAL,*8 R
COMMON /PDATA/ NOBS, TETI, TET2, TET3, TET4, TET5z, TET6, R

COMMON /KIN/ DT1,DT2,DT3,DT4,DT5,
& AL1, AL2, AL3, AL4, ALT
& AAl,AA2,AA3,A.A4,AA5,
& DDl, DD2, D7'3,1 D4, DD5,
& BLI_,BL2,8L3,BL4,BL5,
& XW,YW,ZW,
& D-F6, T1H6, S16, PX6, PY6, PZ6

C Open data files for inputs and results

OPEN (8, NAIME 'RESULT.DAT', STATUS-'NEW')
OPEN (9, NA.ME-'TELE-S3OLN.DAT', STAT1US='CLD')
OPEN (l0,NAME='1NPUT.DAT', STATUS='OLD')

cRead input parameters

read ('0C*)
read (10,*) xw,yw,zw
readl---;tKd~alai~l
read (IC,*) dt2,dd2,aa2,a12,t12
read_- (IC,*) dt3,dd3,aa3,a13,b13-
read'- (10',*) dt4,dd4,aa4,a14,b1-4

read (10C,*)



read ('0,*) df6,th6,si6,px6,py6,pz6
read 110,*)
read (1C,*) nobs,r,dangle,dlelth,magnx,mafll

CLOSE (10)

C Initialize data variables

X (I)=XW
X (2) =Yw

X (3) =001
X (4) =AAI

X (5)=AL1

X (6) =DT2
X (7) =002
X(8)=AA2
X(9)=AL2

X (10 ) =DD03
X (11) =AL3
X (12")=BL3

X(1_3) =D)
X (14) =AA4
X (15)=AL4

X (16) =D 5

X(18)=AA5
X (19) =AL5

X (20) =0D
X (21) =PX6
X (22) =PZ6

R= R-MANX

C Read sim-ulated joint data and tool1 pose

READ (9,*) NOBS

Do 7 1, NOBS
READ (9,*) TE:1(J), TET2(J), TET3(J), TET4(J), TET5(J), TET6(J)

ENID
CLOSE (9)

C Call !MSL routine for non-linear identificati4on

NS J4
EPS=C.
DELTA=31
MAXFN= 0

IcPT= I
1XjA-=LDFJArC
Y=NOBS

CALL ZXSSQ'-(TELEARM.,M,NN,NiSIC,,EPS,DELTA,MAXFN,,IOPI',
P.-XF.Y, X, SSQ, F, FJAC, I XJAC, XJTj, WORKF IN:;ER, IF P)
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C Save results to data file

WRITE (8,-)
WRITE (8,-) 'XW, YW, ZW'
WRITE (8,*) X(l), X(2), ZW
WRITE (8,-)
WRITE (8,-) 'DTl, DD1, AAl, ALl, BLi'
WRITE (8,*) 0.0, X(3), X(4), X(5), 0.0
WRITE (8,*)
WRITE (8,*) 'DT2, DD2, AA2, AL2, BL2'
WRITE (8,*) X(6), X(7), X(8), X(9), 0.0
WRITE (8,*)
WRITE (8,*) 'DT3, DID3, AA3, AL3, BL31
WRITE (8,*) 0.0, X(10), 0.0, X(11), X(12)
WRITE (3,*)
WRITE (8,*) 'DT4, DD4, AA4, AL4, BL4'
WRITE (8,*) X(13), 0.0, X(14), X(15), 0.0
WRITE (8,*)
WRITE (8,*) 'DT5, DD5, AA5, AL5, BL5'
WRITE (8,*) X(16), X(17), X(18), X(19), 0.0
WRITE (8,*)
WRITE (8,*) ' DEE, THE, SIE, FXE, PYE, PZE, R'
WRITE (8,*) X(20), 0.0, 0.0, X(21), 0.0, X(22), R

c Restore initial values of input parameters

open (10,name='input.dat',status='old')

read (l0,*)
read (l0,*) xw,yw,zw
read (l0,*) dtl,ddl,aal,all,bll
read (lC,*) dt2,dd2,aa2,a12,b12
read (10,*) dt3,dd3,aa3,a13,b13
read (l0,*) dt',dd4,aa4,a14,b14
read (l0,*) dt5,dd5,aaS,a1'5,hi5
read (lC,*)
read (10,*) dfE,thE,siE,px6,pyE,pzE
read (l0,*)
read (l0,*) nobs,r,dangle,dlenth,magnx,magnl

CLOSE (20)

C Calc-ilate root mean square error in identification

TQ =DANGLE
DQ =DLENTH

C Error in identificati4on (angular parameters)

SQERR'I
& (AL1+TQ-~X(5))**2 +(DT2+TQ-X(E))*2" +(AL2+TQ-X(9))**2-
& +(AL3±TQ-X(1l))**2
& +(BL3-,4-TQ-X(l2))**2 +(DT4+TQ-X(13))**2
& +(AL4.JTQ-X(15))**2 +(DT5+TQ-X(lE))**2
& -s(AL5+TQ-X(l9))**2
& ±(DF6+TQ-X(20))**2
SQERRI = DSQRT.( SQERRl/l0

C Error -'n identification (length parameters)

SQERP2
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& (DD1+DQ-X(3))**2 +(AAl+DQ-X(4))**2
& +(DD2+DQ-X(7))**2 +(AA2.tDQ-X(8))**2
& +(DD3+DQ-X(lO))**2 +(AA4+DQ-X(l4))**2
& +(DD5+DQ-X(l7))**2 +(AA5+DQ-X(l8))**2
& +(PX6+DQ-X(2l))**2 +(PZ6+DQ-X(22))**2
& +(xw+dq-x(l))**2 +(yw+dq-x(2))**2
SQERR2 = DSQRT( SQERR2/l2

WRITE (8,-)
WRITE (8,*) 'RMS PARMS (LENGTH), RMS FARMS (ANGLE)'
WRITE (8,*) SQERR2, SQERR1
WRITE (6,*) 'RNS FARMS (LENGTH), RMS FARMS (ANGLE)'
WRITE (6,*) SQERR2,SQERR1

WRITE (8,*)
WRITE (8,*) 'INFER, IER,NOBS,NSIG'
WRITE (8,*) INFER, IER,NOBS,NSIG
WRITE (6,*) 'INFER, IER,NOBS,NSIG'
WRITE (6,") INFER, IER,NOBS,NSIG
WRITE (8,-)

CLOSE (8)

END

C

SUBROUTINE TELEARM (X, M, N, F)

C This subroutine calculates the non-linear function for the use of
C the IMSL routine ZXSSQ. It is the forward kinematic solution for
C the MODEL G manipulator.

INTEGER M, N

REAL*8 X(N), F(M)

INTEGER I!, ii

REAL*8 XW, YW, ZW
REAL*8 DTi, DT2, DT3, DT4, DT5
REAL*8 DD1, DD2, D03, 004, 005
REAL*8 AA!, AA2, AA3, AA4, AAS
REAL*8 ALI, A:2, AL3, AL4, ALS
REAL*8 BLI, BL2, BL3, BL4, BL5
REAL*8 fiE, df6, th6, si6, FX6, PY6, FZ6, D3

REAL*8 THI, TH2, TH3, TH4, TH5
REAL*8 TO(4,4), T1(4,4), T2(4,4), T3(4,4), T4(4,4)
REAL1*8 T5(4,4), T6(4,4), trpy(4,4), txyz(4,4)
REAL*8 TIMAT(4,4), T(4,4)

INTEGER 1, J, K, NOBS, MAXNOBS
PARAMETER (YAXNOBS=1OO)
REAL*8 TET1 (MAXNOBS), TET2(MAXNOBS), TET3(MAXNOBS)
REAL*8 TET4 (MAXNOBS), TETS (MAXNOBS), TET6 (MAXNOBS)
REAL*8 R, RR
COMMON /PDATA/ NOBS, TETI, TET12, TET3, TET4, TETS, TET6, R

COMIMON IK-I-1 DTl, 02,073, 0T4,DT5,
& ALI, A-2, AL3, A1_4, AL5,

63



& AAI,AA2,AA3,AA4,AA5,
& DD1,DD2,DD3,DD4,DD5,
& BL1,BL2,BL3,BL4,BL5,
& XW,YW,ZW,
& DF6,TH6,SI6,PX6,PY6,PZ6

C Initialize the TIMAT matrix to an I matrix:

DATA TIMAT/I, 0,0,0,0,i,0,0,0,0,l,O,0,0,0,/

C Set parameters for the manipulator:

XW = X(l)
Yw = X(2)

DD1 = X(3)
AAl = X(4)
ALl = X(5)

DT2 = X(6)
DD2 = X(7)
AA2 = X(8)
AL2 = X(9)

DD3 = X(10)
AL3 = X(11)
BL3 = X(12)

DT4 = X(13)
AA4 = X(14)
AL4 = X(15)

DT5 = X(16)

DD5 = X(17)
AA5 = X(18)
AL5 = X(19)

DF6 = X(20)
PX6 = X(21)
PZ6 = X(22)

C Loop NOBS times

K = 0
DO J = i, NOBS

C Initialize the T matrix to an I matrix

DO II = 1,4
DO JJ = 1,4

T(:I,JJ) = TIMAT(II,JJ)
ENDDO
ENDDO

C Manipulator joint angles

THI = DTl + TETI(J)
TH2 = DT2 + TET2 (J)
TH3 = DT3
TH4 = DT4 + TET4 (3)
TH5 = DT5 + TET5(J)
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FI6 = DF6 + TET6(J)

D3 = DD3 + TET3(J)

C Compute the T matrices, TI thru T6:

CALL T3XYZ (XW,YW,ZW,TO)

CALL TRANSFORM ( ALl, AAI, DDI, THI, BLI, Ti
CALL TRANSFORM ( AL2, AA2, DD2, TH2, BL2, T2
CALL TRANSFORM ( AL3, AA3, D3, TH3, BL3, T3
CALL TRANSFORM ( AL4, AA4, DD4, TH4, BL4, T4
CALL TRANSFORM ( AL5, AA5, DD5, THS, BL5, T5

CALL t3rpy ( fi6, th6, si6, trpy
CALL T3XYZ ( PX6, PY6, PZ6, txyz
CALL matmulc ( t6, trpy, txyz )

C Compute the overall transformation, T:

CALL MATMULA T, TO
CALL MATMULA T, Tl
CALL MATMULA T, T2
CALL MATMULA T, T3
CALL MATMULA T, T4
CALL MATMULA T, T5
CALL MATMULA T, T6

C Calculate the function F

rr=dsqrt ( t (l,4) *t (l,4) -t (2,4) *t (2,4) +t (3,4) *t (3,4)
f (j)=dabs( rr-r)

C End the do-loop for counter J

ENDDO

C Compute RMS error

sumsq=0 .0
do j=l, nobs
sursq=sumsq+f (j) *f (j)
enddo
rms=sqrt (sumsq/nobs)
write (6,*) rms

RET URN
END

C
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C

PROGRAM VERIFY

C This program generates the six-dof pose error for the MODEL G
manipulator.
C It contains the identified cali2bration parameters and the exact
parameter.
C It uses a data file of verification joint angle sets POSEVER.DAT, and
the
C file RESULTT.DAT from the program ID6.

INTEGER I, 0, K, NPOSES, N
REAL*8 DANGLE, DLENTH
REAT*8 P(200),CR(2-00),Wl(200),W2(200C),w3(200)
REAL*8 DT(5) ,dd(5.) ,aa (5) ,al (5),bl (5), world(3)
REAL*8 eDT(5) ,edd(5) ,eaa (5) ,eal (5) ,ebl (5), eworid(3)
REAL18 edf6, EFI6, ETH6, ESiII, EPX6, EPY6, EPZ6
REAL-8 THETA(lCQCQ,6), TDELTA(4,4)
REAL*8 :.0(4,4), TI(4,4), T2(4,4), T3(4,4)
REAL*8 T4(4,4), T5(4,4), T'6(4,4), TRPY(4,4), TXYZ(4,4)
REAL*8 TMAT(4,4), T (4,4), et (4,4)

REAL8 CTI, DT2, -:3 -T4, :T5
REAL*e DD.., D:2, 223, Z= 4, :£25
REAL*8 AAI, A.A2, AA-4, AA4, AASE
REAL*8 ALI, AL2, AL3, L4, A?
REAL*8 BLI, BL, B-3, FL4, P:L5
REAL*e DF6, F16, 'THE,, PY. FYE, PZ6
REAL-8 XW, YW, Z '.
COMMON :IM.A:,:HE:A

C n iti--a!i4ze the TIMA- ma rx tz an. mra t r

C pen. data fileI

O PEN ( 9, NAIME-'p-sever .:A', S-AU*S='OLD')
OPEN (1, NAME='inrput.2-A', S-A-"-S='CLD')

OPEN (11, NAME='resuit.A'f, STAT'US='OLD')

" ea--ad input parameters

read (10,*)

read (I0,*) dt,2,dd2,aa2',a ,bI2
read (IC,*) cit-3,dc3,aa3,a13,t bi?
read (10,*) dt4,dc.i4,aa4,a14,t14
read (10,*) dt5,dd5,aa5,a.5,,b1S
read (IC,*)
read (C0,*) df6,thE,si6,Qx6,pyE,pzE
read ( 1C ,* )
r ead (10, *) ni3 ,r ,d ar. g Ie, d Ie n t m ag x , ma q

CLOSE (12)

" Read In jntanale sets f r verification poses



read (9, *) nposes

do i=l,nposes
read(9, *)theta (i,1) ,theta (i,2) ,theta (i,3) ,theta (i,4),

& theta (i, 5). theta (i, 6)
enddc
close (9)

C Set exact link parameters for the manipulator:

dt(l) dtl defined
dt(2-) dt2 -dangle
dt(3) =dt3 defined
dt(4. dt4 + dangle
dt(S) =dt5 + dangle

wcrld(l) =world(l) + dlenth
world(2) = world(2) + dienth

a!(!) = all + DANGLE
al(2) = al2 + DANGLE
al(3) =a13 + DANGLE
al(4) =a14 ±DANGLE

al(5) = al5 4- DANGLE

AA(l) = aal +- DLENTH
AA(2) = aa2 + DLENTH
AA(3) =aa3 defined
AA(4 = aa4 -~DLENTH

AA(5) = aa5 tDLENTH

DD(I) = ddl- + DLENTH-
DD(2) =dd2 DLENTH
DD(3) = dd3 + DLENTH
OD( = dd4 defined
DD(5) =dd5 -DLENTH

BL('.) =bli defined
BL(2) =b12 defined
BL(3) = bI 1 ± DANGL7E
BL(4) = t14 defined
BL(5) = bl defined

DF6 DF6 + Danale
TH6 0.2

PX6 P X -6 DL EN:
PY6 = 0.11

E76 =PZ6 -LN.

c Read in and set up estimated parameter table

read(-'-,-
reaJ(I.,*)
read(!--,*) eworldil () ,ewcrl-d(') ,eworld(3)

dc i=-',5
read (II , *
r ead (.I1, *)
read (11, *) edt. (I) , edl ii) , eaa (i) , eal (i) , ebl (I

en -34



read (11,
read( (1, *
read(ll,*) edf6,eth-6,esi6,epx6,epy6,epz6,r

c do kk=l,3
c write(6,*)wcrld(kk),eworld(kk)

" enddo

c do ii=1,6
c wri4te(6,*) i4

" write(6, *)al(ii) ,eal(ii) ,aa(ii) ,eaa(ii) ,dd(ii),edd(ii),
c & bl(ii),ebl(ii),dt(ii),edt(ii)

r enddo

c Main loop through NPOSES joint angle sets

do k=l,nposes

call fks (k,world,dt,al,aa,dd,bl, fi6,th6,si6,px6,py6,pz6,t)
call fks (k, eworid, edt, eal, eaa, edd, ebl, efi6, eth6, esi6, epxE,

& epy6,epz6,et)

" Compute the differential tool matrix

call matsub (tdelta,t,et)

c Cormoute the pose errors

poserr~sqrt (tdelta (1,4) **2±tdelta (2,4) **2±tdelta (3,4) **2)
orerrl=(tdelta (3,2) -tdelta (2,3)) /2
orerr2= (tdelta (1,3) -tdelta (3,1) )/2
orerr3= (tdelta (2,1) -tdelta (1,2)) /2
orerr=sqrt (orerri **2+orerr2* *2+orerr3**2)

" U~pdate total error counts

posterr=(poserr+(k-l)*posterr)/k
orterr =(orerr -(k-i) *orterr) 1k

" End of main ioop

endd c

write (6,*) 'Position error, orientation error'
write (6,*) posterr,orterr

OPEN (19, NAM-E='VER.DA'-', STATUS='GLD')
READ (:9,*) NR

NR=NR- 1
p (nr) =POSTERR
or (n r) =ORTERF.
wI (nr) =WORLD (1)-DLENTH-
w2 (n-) =W(DRID (2) -DLENTH
w3 (nr) =WORLD (3)
REWIND 19
WRITE(19,* nr
Wp::E, (9, *)(P 7I OCR(I), ,W (I), ,W (I),W(I,=N)



CLOSE (19)

end

subroutine fks (n,world,dt,al,aa,dd,bl,df6,th6, siE,
& px6,py6,pz6,t)

REAL-8 70(4,4), 71(4,4), T2(4,4), T3(4,4)
REAL*8 T4(4,4), 75(4,4), T6(4,4), TRPY(4,4), TXYZ(4,4)

real*8 tbheta(1OOO,6), ang(5), world(3)
common tirnat,theta

C Initialize the T matrix to an I matrix:

DO J=1,4
DO K=1,4

T(J,K) = TIMAT(J,K)
ENDDO
ENDDO

C Set up the joint angles

do i=1,5
ang Ci) =theta (n, i)
enddo

fi6=theta Cn, 6)+df 6

C Compute the T matrices, TI thru T6:

call t3xyz (world(l),world(2),world(3),T0)

CALL TRANSFORM Cal (1),aa (1),dd(l) ,ang(l) ,bil ),Tl)
CALL TRA.NSFORM (al(2),aa(2),dd(2),ang(2),bl(2'),T2)
CALL TRANSFORM (al (3),aa(3),ang(3),dt(3),blC3),T3)
CALL TRANSFORM (al (4) ,aa (4) ,dd(4),ang(4) ,bi(4) ,T4)
CALL TRANSFORM CalC5),aaC5),dd(5),ang(5),bl(5),T5)

CALL T3RPY (fi6,th6,si6,TRPY
CALL 7.3XYZ (px6,py6,oz6,TXYZ
CALL MATMULC C T6, TRPY, TXYZ

C Cor~route tne overall transformation, T:

CALL MATMULTA (T, TO
CALL MATMUL1A CT, T1
CALL MATMULA CT, T72
CALL MATMULA (T, 73
CALL MATM'ULA C 7, T4
CALL MATMU;LA T , TS
CALL MATMULA f T, 6

return
enda

c
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